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N \(\1,5

Equations comprising a solution for the time spent by a

SUMMARY

satellite in umbra and penumbra are derived. Umbra and penumbra
regions are assumed to be right circular cones, and shadowing bodies
are assumed spherical., Pertinent constants are evaluated for shadowing
by both the earth and the moon. The solution is applied in predicting
shadow time distributions for the AIMP mission (establishment of a

AT

lunar satellite orbit),
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NOMENCLATURE

gemima jor axis of ellipse

semiminor axis of ellipse

distance between sun and body casting the shadow

eccentricity of ellipse
eccentric anomaly

orbit inclination

mean anomaly

orbit lifetime

center of the moon

umbra half-cone angle
penumbra half-cone engle
orbit radius

orbit radius at apocenter
orbit radius at pericenter
radius of the earth

radius of the moon
radius of the sun

center of the sun

time

shadow time per orbit period

time of perigee passage

rectangular position coordinates

angle between the moon-sun line and the osculating lunar orbit planme

true anomaly

iit



M gravitational comstant

T 3.14159265

angle in the orbit piane from the projection of the moon-sun
line in the plane to any radius r

Tp value of ¢ at lunar orbit pericynthion

T orbit period
Cb latitude

(v argument of pericenter

iv



A INTRODUCTION

12 conrnection with the AIMP mission, a requirement was manifest
to predict shadow time distributicns for lumar satellite orbits. At the
t ime of the study no lunar orbit shadcw program was available to the Delta
Project, and tabulated data available were based on sclutions which assumed
cylindarical shadow regions,

While cylindrical shadow thecries are sufficiently accurate for most studies
involving low or medium altitude satellite, accurate determination for
high altitudes should be based on the ~onical model of umbra and penumbra
regions.

The order of magnitude of the difference in the two solvtions is
indicated by Figure 1. This figure shows the maximum time in umbra and the
maximum time in both umbra and penumbra (see sketch) for circular orbits
of various radii. Times for both earth orbit
satellites and lunar satellites are shown. penumbra
Times determined by a cylindrical shadow
theory would lie between the "umbra only"”
and 'vmbra and penumbra” curves., The
separation of these curves can be seen to be
relatively large for high altitude orbits.

cylinder

Bacause of error magnitudes possible in the injection into earth-to-
moon transfer orbits, lumar orbits achieved in the AIMP mission may have
an extremely wide ramge of eccentricities and altitudes. For this reason,
a conical shadow theory was regarded as desirable.

A solution im which the umbra region is assumed conical, and the
shadowing body is assumed spherical, is presented in Section B. Appendix C
shows the applicabiliiy of this solutior to the determipation of time
spent in the penumbra, The iterative solution is relatively simple and
requires as imputs the size and shape of the satellite orbit and the angular
position of the zun relative to rhe orbit plane. :

Several authors have considered the shadow time determination problem
(Refevences 1 - 5) . Most solutions assume the cylindrical shadow model.
However, Fixler (Ref, 4) determines, by a different derivation, a solution
which is reducible to that of Section B.



B. ANALYSIS

The geometry of the shadow time computation problem is shown in
Figure 2. Here (A) is an edge view of the orbit plane viewed along a
line perpendicular to the moon-cun line, and (B) is a projection showing thse
top view of the orbit plane. Scale is distorted, of course, for clarity.
The lunar orbit plane intersects the shadow cone in a conic, generally an
ellipse, hereafter called the ''shadow ellipse"

I1f p is the umbra half-cone angle,

sin p = B&M—S—FSL = 0.004646303 .
The value c¢f MS here is taken as the average value;, 149.53 x 106 km
.see Appendix A).

p = 0.26498
%‘—‘ 90°~- § — p
$,=90°-§+p
~Then the zemimajor axis of the shadow ellipse, ag, can be obtained from
F—;—‘= cosy, = sin(5+P)
and .
%‘“s Y= sin(§-p)
so that
d+f R([ | | ]
= = e + Y
As 2 2Llsin(s+p) sin(§-p) (1)
Note that since
sin(§+p) sin (§—-p) = sin?§ — sinp, {2)
a, = R sind cos p (3)

q« . R
sin*§ —smzp

The shadow cone touches the meon aleng a minor circle of 'latitude' p
above the great circle normal to the moon-sun line. This minor circle
touches the shadow ellipse in the orbit plane at two points, P and Q. The
inclinetion of the lunar orbit plane to the normal great circle is 90° -§.
Therefore, from spherical trigonometry

sihc= —SnpP __ sinp (£)
sin(90°-§) cos § .

If (x', y') are coordinates in the lunar orbit plare with origzin at
the center of the shadow ellipse, the equation of the shadow ellipse iz

xfz y/z .
—_— 4+ = = | (5)
a;  bg




Evaluating Eq (5) at the tangent points,

X’_—. Qg — d + R(sinc

y/= xR cosc

gives
s | _(2s=d , Re )zJ
b R:(l—sin‘c)[' ( = o, 2inc (6)
Note that
_def f-d _ Rq | - '
Qs—-ol— ; -d = 2 - lein(S—p) sin(S+p)

From Eq (2),

R COSS S.lhp

as—d = T sin® § — sin’p
and
as-d _ tan P N
As tan o
Also, Rq sinc = —taonp (sinzg— sin‘p)
Qe sin$ cos &
R gine 4 Sa=d _ 2200, L (s i)
Ag sinc + Qg - tan § ‘+ COS"X (Slh §-sin P)
sin pcos p (8)
sin § cos §
R;(I-sin’c) = R (l - sc—Eéng) (9)
Substitution of Eqs (8) and (9) in (6) gives
R (, _ sin’p
b: R? Sin?$ (10

The equation of the ellipse in moon-centered coordinates (x,y) is

(x+a:=d) | y* _
ag* b

or, in polar coordinates,
2 2 . 2
rcoso as—d r'sin‘c
+ 2amd) oy LSl
s as b2 ! an
The equation for the lunar satellite orbit is

a(l- e?) (12)
| + € cos (o - o)

r =




Then, if values for § and Op are specified at any time, a simultaneous

solution of Eqs (11) and (12) gives the two values of o~ at which the satellite
orbit and the shadow ellipse intersect. Since the equations are transcendental,
the solution must involve an iterative procedure. Eq (12) may be used to
eliminate r in Eq (11).

However, Eq (l11) can be simplified without resorting to
expansions.

The equation of the form

(x+9)* 4 y*
as? b2

can be written in polar coordinates as
(r*cos*c + 2rgcosa + g2) , r*{| - cos*c)
2 + 2
as bs

or ag? al a
rz[To_s‘ + cos"a(l - ﬁ’)]+ r‘[Zq cos 0'] +g*-ad = 0. (3
s £

The discriminate reduces to

2 a
B*-4AC = 4a,’[l +(-q—‘-5:,—g— -—l) sin’o-] . (14)
S
From _ R ¢
a4 = sin (§ + p) ’
g = as—4d
and Eqs (3) and (10) ,
2 2 .
2e=2 — | = cot’§ (15)
s
ad - cos*p
by sin® § — sin*p (16
as’ - — cos*d
- b, sin?*8§ — sin*p a7

Substitution of Eqs (15), (16) and (17) into Eq (13) gives the final equation
of the shadow ellipse in polar, moon-centered coordinates.

r o= R( —coso cos§sinp £ cos p\ﬁ- cos?d cos* o (18)
CoS*p — cos*§ cos?o
The positive sign should be chosen in the numerator of Eq (18). That

the negative sign is redundant can be seen most easily if the small angle p
is set equal to zero. Then

r=i( ' ) (p=o)

Y1 - cos2§cosio

iy




Since the radius vector is by definition a positive quantity, tne
negative sign is redundant. '

Substitution for r from Eq (12) gives the final equation, to be

solved for o, the angular coordinate of the intersection of the orbit and the
shadow ellipse.

For)= - a—(-i-.—sz-}(coszp— cos?§ cos?o) +[l+

R« (19)
+e cos (o~ 0',,)](— Cos U cosSsinp + cos pV I- cos2§ cos2o )
= 0
This transcesdental equation must be solved by iteration. Newton's method
gives
F (o,
Oy = 0O, — .__.I.(_L) (20)
F'(on)
where ‘( )
F"(cr): - 2&9_ cos*5 sin 0~ coso
{
—e& sin(o —~0,)(~ cos o cos § sin P)
+ cospylil - cos‘Scos‘cr) + [ I
+ e cos(o- O‘P)J sin o cos § [sin P
4+ gosp cos $ cos o
VI-cos?§ cos"o-]
Equations (19) and (20) then comprise the means of solution for the
angular positions in orbit at which the orbit intersects the umbra cone.
The time in shadow can then be determined easily from Kepler's equation,
= - =,|# - .
l = E -—esinE aa(‘t tp) (21)
where
sinE = V=€'sin®
| + e cos &
cosE = e +’cos e
] 4+ e cos &
e = U - 0,

P

Certain special cases have not been considered in the above solution.
In Appendix B, the special case in which §<p and the shadow conic intersection
is a hyperbola is considered. The solution is shown to be the same as in the
elliptical intersection case (Eq 18). Also, in Appendix C the solution for the
penumbra intersection is shown to be similar to Eq. 18.
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C. Application to Computation of Lunar Satellite Shadow Time

The computation routine of Section B was programmed in Fortran IV and
incorporated in an orbit integration program in order to study shadow
requirements of the AIMP lunar satellite mission. The integration program
provides inputs (§, 7., a, e as functions of time) to the shadow computation
routine.

Orbits to be studied with the shadow routine were generated by the
following procedure.

(1) The nominal velocity magnitude, azimuth angle and flight
path angle at third stage burnout (i.e. injection into the
earth-to-moon transfer orbit) of the Delta DSV-3E vehicle were
taken as means of three normal independent distributions of specified
standard deviations.

(2) Non-nominal sets of burnout conditions were generated from these
three distributions for a large number of cases by means of
a random number generating routine.

(3) Each set of non-nominal burnout conditions was used as input to
the Interplanetary Trajectory Encke Method (ITEM) program, which
for each of the error conditions, as well as initial lunar orbit
elements resulting from various fourth stage firing times.

(4) For each transfer orbit one set of initial lunar orbit elements
which appeared to represent a long lifetime lunar orbit was
chosen as input to the lunar orbit integration program. If the
first selection failed to achieve the desired six month lifetime,
one or two other sets of elements were tested. The lunar orbit
integration program used is a variation-of-parameters program
written by Dr. William Kaula with modifications by the Douglas
Aircraft Company and the Delta Project Office and incorporating the
shadow routine described in Section B.

(5) Shadow and lifetime datawere tabulated for the lunar orbit having
the longest lifetime of the cases investigated for each transfer
orbit.

Results for a sample of one hundred transfer trajectories are shown in
the following table. Here, r_, r_ , a, e, i and w are the initial lunar orbit
elements (pericynthion and apocynghion radii in km, semimajor axis in moon
radii, eccentricity, inclination and argument of pericynthion in degrees
relative to the lunar equator and vernal equinox). Also, L is the lunar orbit
lifetime_in days, tgmax 1s the maximum shadow time experienced in any orbit
period, ts is the average shadow time per orbit, and % t is the percentage of
orbit time spent in shadow. The time at which the shadow time first exceeds
1, 1.5, 2, 2.5 and 3 hours is also given. Here ‘'shadow' means umbra; no
penumbra investigations were made for this mission.

-6-




Orbits having apocynthion radii greater than 25,000 nautical miles
(46,300 km) were not investigated as being of questionable stability.
The integration program used is not suitable for stability determination
since accuracy degenerates for high altitude orbits. Also seven transfer
orbits of the sample did not approach sufficiently dose to the moon to
achieve a lunar orbit. These cases are indicated in the table.

Figure 3 summarizes the shadow and lifetime data. For a given time
after lunar orbit injection (abscissa scale) the ordinate scale indicates the
number of cases having a longer lifetime and also having a maximum shadow
time per orbit less than 1, 1.5, 2, 2.5, or 3 hours. The upper curve shows
lifetime data without maximum shadow time requirements. Figure 4 shows
histograms of the maximum and average shadow times per orbit.
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APPENDIX A
Constants for Cone .nngle Determination
Complexity of the shadow time computaticn can be greatly reduced

by using mean values of geoid radius, Rg, anc earth orbit radius,D, in
the forrulas for umbra and penumbra haif cone angles (Egs C.1, C.2). These
quantities vary between the following limits.

6256.77 € R, < 6378.165 km

147.02 x 19%< D < 152.03 x 10° Knm

the wean values to lte used in general programs may be computed in several
liflevent ways.

1. Mean Geoid Radii

a. Radius of the snhere having volume equivalent to that

of the obhlate sphe=cic Y
The volume of an oblate spheroid
(a volume generated by rotating an a
ellipse about its minor axis) is given
by b X

b
V = 271 |[y*dx

[

AGl)

whére .the minor axis coincides with the x-axis. The equation
of the ellipse in the coordinates shown in the sketch is

2

2
X —
X 4 5= I . 2)

b2.

"
Substituting for y - ia (A.1) gives
b

2 x* _ 4 2
V=27[al-5)dx = = Tdb
A b 3
If R is the radius of the sphere of equivalent volume,
%WR3= %Wc‘b

R, = Yo*b (A.3)

b. Radius of the ellipse averaged over latitude angle

In the elliptical cruss-section of an oblate
spheroid, the radius may be expressed as a function
of latitude as follows:

xz yl
az+_ = |

bl



rrcosi¢ _ ri*sin’¢

a? b* = Ly

F? o= | _‘:i/// x
T cos?e . sin*d (A.4)

al bl
The radius averaged over latitude is
f
Ry = / r(¢)de ., (A.3)
]
Substitution of (A.4) in (A.5) and simplification gives
1
b
Re = 2 do .
VI-k*cos™e (&.6)
where Jé - ;__P_.__ e?

a2
Then

2b —4——- = Z..b )
/Vl ~ A*sin*¢ F 4. Jir_ .7

where F is the elliptic integral of the first kind.
For A'<< |

R,=b[l+2 -4-9()‘2)2+50(J?‘)3 ] (A.8)

c. Radius of the circle having a circumference equivalent to
that of the spheroid cross-section,

Determination of the circumference /’
of an ellipse is facilitated by

definition of an auxiliary variable, the //_
3

eccentric anomaly E, and choice of

coordinates centered at the focus of the
elliptical cross-section. Then,if s is

arc length along the circumferernce, /

ds? = dx? + dyz

x al(cosE - e) dx ~a sinE dE
y = bsinE dy:locosEolE

ds = a|l - e*cos?*E dE
s = Zaf\/l-—e cos?E dE
s = 4aFE (2+4k) ., £ =€

If the circumference of the equivalent circle is Z2 W R ,

22F (2. 4) (4.9)

\/




For Jtz<<’

- ol - 24 -o{4T ol

3
"..J .10

Radius of the circle having an area equivalent to that
of the spheroid cross-section.

Fog the ellipse given by
X 2
-—2+‘L,=|
a b

the area is

-l _ T X
A-—4[yAX-#bo = X dx

a
= Zo[x(aT=x* + a?sin” X]
/]

A = Wab h(A.l].)
If the radius of the circle of equivalent area is Ry,
R, = {ab (A.12)

i. Meza Earth Orbit Radius
a. Astronomical Unit

The astroromical uvnit is the mean distance from the sun
to a fictitiocus planet, the mass and period of which are those

used by Gauss in his determination of the solar gravitation
constant.

R = 149.53 x 10° km

L. Radius averaged over orbit central angle

e ¥ 2
re = f/r(e)de = %/——-———“("e) de

|+ e cos &
[
x
- O(I—e‘)[ 2 _tan--\h—e’tang]
w yi—e* |+ e o
r‘e = a ,_ez

(A.13)
c. Radius of the circle of area equivalent to that enclosed by the
earth orbit
From (A.1ll)

Tab = 7rra.2




r« = {ab = a(i-e*) (A.14)
d. Time average of orbit radius
Kepler's equation is

l: E-—-cs'lhE

where

1= y5(t-t,)
Then JdJE _ |

d4 | - ecosEE

r = a(l — e cosE)

dE _ a

dA r

JE

=,,.&_°J§_=L’A
dt a’® d4 rya
The orbit radius averaged over time is

T
re = -,’F r(t)dt

-]
where T 1s the orbit period,

L2
re = [ r(E)[E aE
Ta a7 M
a 2
—— - E) dE
27,_[(] ecosE)

e’ L 15
re = a (1 + ET) (A.15)

e, Radius of the circular orbit of equivalent pericd

Ie = & (A.15)

This is also the average obtained by considecing the sum of
the radii from each focus to every poiat on the ellipse.

r,+ r, = 2a

f. Radius of the circle of equivalext circumference

From (A.10)




2\ 2
ro = a[l- 24 - 5(&£)- ] (4.17)

Numerical Evaluations
Mean Geoid Radius

Type of Average Formula Value, km
Sphere of equivalent R = a’b 6371,02
volume v
Radius averaged over - 2b x 6367.45
latitude RQ ™ F('&'I)
Circle of equivalent _ 2a x 6367.47
circumference Re = ™ E ('&' 2)
Circle of equivalent 6367.46

area

R.= V<al3

Assumed constahts:

a = 6378.16 km
b = 6356.77 km
e = 0,0818292
Mean Orbit Radius
Type of Average Formula Value, r/a

Astronomical unit

Defined, 1.4953x10%km

Equivalent circumferencT

Radius averaged over ro= 5 0.9998601
central angle ¢ = ayl-e
Circle of equivalent 1 0.9999300
area : re =Jab = a(l-e*)*
Radius averaged over — e* 1.0001399
time e = a( b+ 2 )
Equivalent period Iy = a 1.0
_ 2a "W
re = TE()M Z) 0.99993006

Assumed earth orbit eccentricity e = 0,0167268

-5-



4.

Values for Cone Angle Calculations

The tables of the previous section indicate that three of the
four geoid radius averages differ by the order of magnitude of the
errors in the equatorial and palar radii

]

a = 6378.16 + 0.02 km

b

6356.77 + 0.05 km

Therefore based on these values of the physical constants, a suitable
value for the average geoid radius is 6367.46 km.

Also, the tables show that all computed values of mean earth
orbit radii lie within the range of uncertainty in the astronomical
unit .

6 6
a.u. = 149.53 x 10 4+ 0,03 x 10 km,
which is, therefore, a suitable mean orbit radius.

For problems requiring greater accuracy than can be achieved with
mean cone angle values, ephemerides may be used to compute exact
values for the time in question. Figure A-1 shows the variations
in umbra and penumbra half-cone angles during 1966 for the earth and
the moon,




APPENDIX B

Special Case §<p

For the case §<p the conic section formed by the intevsection of
the orbit plane and the shadow cone is a hyperbcla. Hewever, the equation of
this shadow hyperbola 1s the same as that cof the ellipse iv the more
general case §>p (Eq 18). Verification of Eq 18 im the hyperbolic case
may be carried out in a scheme similar to that of Section B. The geometry
is shown in Figure B-1.

As beforve, from Figure B-1 (A),

d = —R< (8.1)
sin (p+8)
and, from (B)
. _ sinp
sine = cos § (8.2)

The equation cf the hyperbola in moon-centered conrdinates is

(x_gl)z _ yz _ ' |
T a? 'T;E = (B.3)

a? (e*=1)

a + d

2
where b
’

q
Thz shalew nune Is tangert to the mcon alomg a minor :ircle of latitude
p above the grest circle pcrmal to the M-S line, as in the ellipse case,
Then ary ourve lying in the shadow core (and, in particwlar, the shadow
hyperbola) is also targent to the mcon on this cir:ule at

I

x, = Rg¢ sinc = Ry sih P (B.4)
cos §

y‘ = R‘ cosc
in moon-ceniered coozdinates. Differertiatirg (B.2) gives

2(x-g) 2y dy

a? b® dx 0
dy _ b x-9g’ (8.5)
Ax az )’
At (g, )

dy - R‘ cosS C
Eﬂ: |._ sin p cos §

Cos § “sinp

= cos C = —tan c
singc — '
sin C



dyl - _'z‘[&sinc—q'}

dxl|, a? Rq¢cos c (3.6)
From (B.6) and 9’ =a+d

a*_ a+d _,

b? R¢sinc (B.7)
Substituting (B.4) in (B.3) gives

a? a2 (Resinc - g’)?

-2 —14 ] B'8)

b? R&cos?c Ricos?c (
Substituting (B.7) in (B.8) and simplifying yields

a = dR¢ (sinzc +1)-(R&+ d?) sinc

=R (I + sin?c) 4+ 2d sinc

which in turn, on substitution of (B.1) and (B.2) gives

a = Rq cos P sing (B.9)

sin*p — sin®§
Lxcept for sign, this expression is the same as Eq (3) (part B).
Also, from (B.7)

1 - a+d-Rgsinc (B.10)
B* a*R¢sinc

From (B.9), (B.1l) and (B.2)

sinpcos$ sin p]
sinp-sin?§  cos$

a+d - Rgsine = Rc[

so that (B.1l0) can be reduced to

..'_=_'_1(L"".E_|) \ (8.11)
b* R \sin%s

The equation of the hyperbola may be derived as follows. For
x =rcosc and y = rgino , (B.3) gives

r;(ca:ia _ I—T:fﬂo-) _ 2(0\;20\)(:050, r o+ (a;:‘)l__ = o
In the usual quadratic notation, designate

A= co;:v' _ I—I::szo'

B = :&%I—‘i) cos o (B.12)

¢ = laxa)’_




Since, from (B.9) and (B.1l),

|
+ ——— 2
2 2 .
a b R sin2§ cos?*p 0s*4

I (sin*p - sin?§) c

so that

>

_ 1 (sin*p —sin?%) ( cos*§ cos?a |
. R: sin2§ cos?p )
Also,

B*- 4AC = %[l + s’inza(Lt_é: - l)]
Then -B Im

r =

2A
2
(a+d)cos o ia\/l+ sin’o‘(‘&%—l)

a"[{-&,-ﬁ- -é-;.)coszo’ - ﬁ-z]

From (B.1), (B.9) and (B.10)

—_2adbt d* -] = cot?$§
and
a+d = R¢sinp cos$

sin(p+8) sin(p-8)

Substitution of (B.1l4) and (B.15) in (B.13) yields

r

cos?p ~ cos?®d cos? 0

This equation is exactly the same as Eq (18), Section B.

= R, = Sinp cos § cos 0 + cos pY | — cos?§ cos?T
- q

(B.13)

(B.14)

(B,15)

(B.16)




APPENDIX C

Penumbra Determination

The analysis of Section B is applicable to determination of
time spent in penumbra as well as time spent in umbra, Figure C-1
shows the geometry of the penumbra problem, Here (A) shows the penumbra
and umbra shadow-cones, with their half-cone angles p*, and p, respectively.

D -
i - R0+R¢
sin p ———D (C.2)

Values for the earth and the moon are given in the following table

p, deg pl, deg
earth 0.2644366 0.2693218
moon 0.2662145 0.2675467

The geometry of the penumbra problem is obviously the same as that of the-
umbra problem. The magnitude of the half-cone angle changes from p to p,
and the vertex of the umbra cone is on the opposite side of the central
body from the vertex of the penumbra cone. In fact, the analysis of
Section B holds in the penumbra case if the transformation

P'-'"'Pl

is made.

This solution can be verified from Figure C-1.

From (B) Re

sin(§-p")
R
sin(§+p)

d+f =_R_,[ | + [ ]
2 2 Lsin($-p)  sin(s+p')

d =

(c.3)

. (C.4)
Then

(c.5)
From (C)



X! = —a+f-R¢sinc = a—d—R(S_‘hC

Yy = + Rq cos C
Then
4 - L x'*
bl y”'(' - _a—z)
_ | [ _f(as-d _ Re_. (C.6)
- qu(‘ - SEnzC) l ( Ke As S"‘C) ]
Also A £ e
+ I _ !
a,-d = A4 7‘[33"(8+p,) smg-p')] .7

The substitution p%—p can be seen to transform (C.1), (C.2), (C.3), (C.4),
(C.5), (C.6) and (C.7) into the corresponding equations of the umbra problem
(Section B, Eqs (1),(6)).

The equation of the shadow ellipse in moon coordinatesz is
(x-a;+ £)" | ¥* |
agz bsl .

However,
~-at+tf=-a+2a-d=a-4d

so that the ellipse equation becomes
2 2
(x +a,—d) + X o (C.8)
asz b:

which is the same as the equation preceding Eq (11), Section B.
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